
Blackout: What Really Happened
Jamie Butler and Kris Kendall

1-2

Outline

Code Injection Basics
User Mode Injection Techniques
Example Malware Implementations
Kernel Mode Injection Techniques
Advanced Code Injection Detection via Raw
Memory Analysis

1-3

Code Injection Basics

“Code Injection” refers to techniques
used to run code in the context of an
existing process
Motivation:
• Evasion: Hiding from automated or human

detection of malicious code
IR personnel hunt for malicious processes

• Impersonation: Bypassing restrictions
enforced on a process level

Windows Firewall, etc
Pwdump, Sam Juicer

1-4

User Mode Injection Techniques

Techniques
• Windows API

• AppInit_Dll

• Detours

1-5

Injecting code via the Windows API

Somewhat surprisingly, the Windows API
provides everything you need for process
injection
Functions:
• VirtualAllocEx()
• WriteProcessMemory()
• CreateRemoteThread()

• GetThreadContext() /
SetThreadContext()

• SetWindowsHookEx()

1-6

1. OpenProcess

evil.exe (pid = 2222)

Kernel (via kernel32)

iexplore.exe (pid = 3333)

1

OpenProcess(3333)

2
Handle = 400

hProc = 400

payload = 0xCC

3

1-7

2. VirtualAllocEx

evil.exe (pid = 2222)

hProc = 400

Kernel (via kernel32)

iexplore.exe (pid = 3333)

1

VirtualAllocEx(
 hProc,
 0x4000,
 256,
 . . .)

4
base = 0x4000

base = 0x4000

2

New section
Base address = 0x4000

Size = 256 bytes

payload = 0xCC

5

3

1-8

3. WriteProcessMemory

evil.exe (pid = 2222)

hProc = 400

Kernel (via kernel32)

iexplore.exe (pid = 3333)

1

WriteProcessMemory(
 hProc,
 base,
 payload,
 1,
 …)

base = 0x4000

2

New section
Base address = 0x4000

Size = 256 bytes

payload = 0xCC

3 0xCC

1-9

4. CreateRemoteThread

evil.exe (pid = 2222)

hProc = 400

Kernel (via kernel32)

iexplore.exe (pid = 3333)

1

CreateRemoteThread(
 hProc,
 SecAttribs = NULL,
 StackSize = 1024,
 0x4000
 …)

base = 0x4000

2

New section
Base address = 0x4000

Size = 256 bytes

payload = 0xCC

3

0xCC

4
ThreadId = 11

New Thread
Id = 11

Start Address = 0x4000

ThreadId = 115

10

#Inject an infinite loop into a running process

import pydbg
k32 = pydbg.kernel32
payload = ‘\xEB\xFE’
pid = int(args[0])
...

h = k32.OpenProcess(PROCESS_ALL_ACCESS,\
False, pid)

m = k32.VirtualAllocEx(h, None, 1024,\
MEM_COMMIT,\
PAGE_EXECUTE_READWRITE)

k32.WriteProcessMemory(h, m, payload,\
len(payload), None)

k32.CreateRemoteThread(h, None, 1024000,
m, None, 0, None)

1-11

Better Payloads

Breakpoints and Loops are fun, but what about
real payloads?

If we directly inject code it must be “position
independent”

Any addresses that were pre-calculated at
compile time would be wrong in the context of a
new process

1-12

Better Payloads

Building large position independent payloads is
possible, but not trivial

However, DLL injection is much simpler

DLLs are designed to be loaded in a variety of
processes, addresses are automatically fixed
up when the DLL is loaded

1-13

DLL Injection

Use the basic process we just described

DLLs are loaded using kernel32!LoadLibrary

kernel32 is at the same address in every
process we know its address in the remote
process (ignoring ASLR)

Allocate space for the name of the DLL to be
loaded, then create a thread with a start
address that points to LoadLibrary

14

#DLL Injection Excerpt

import pydbg
k32 = pydbg.kernel32
pid = int(args[0])
dllname = args[1]
...
h = k32.OpenProcess(PROCESS_ALL_ACCESS,\

False, pid)
m = k32.VirtualAllocEx(h, None, 1024,\

MEM_COMMIT,\
PAGE_EXECUTE_READWRITE)

k32.WriteProcessMemory(h, m, dllname,\
len(dllname), None)

k32.CreateRemoteThread(h, None, 1024,
k32.LoadLibrary, m, 0,

None)

1-15

User Mode API Variants

Rather than create a new remote thread, we
can hijack an existing thread using
GetThreadContext, SetThreadContext

SetWindowsHookEx can also be used to inject
a DLL into a single remote process, or every
process running on the current Desktop

1-16

SetWindowsHookEx

SetWindowsHookEx defines a hook procedure
within a DLL that will be called in response to
specific events

Example events: WH_KEYBOARD,
WH_MOUSE, WH_CALLWNDPROC, WH_CBT

Whenever the hooked event is first fired in a
hooked thread, the specified DLL is be loaded

1-17

Permissions and Security

To open a process opened by another user
(including SYSTEM), you must hold the
SE_DEBUG privilege
Normally SE_DEBUG is only granted to
member of the Administrator group
However, even if you are running as a
normal user, malware can still inject into
another process that you own

1-18

Injecting code via AppInit_DLLs

The AppInit_DLLs registry value provides
another convenient method of DLL
injection

1-19

Injecting code via Detours

Detours is a library developed by Microsoft
Research in 1999
The library uses the same techniques
already described, wrapped up in slick
package

1-20

Detours Features

Function hooking in running processes
Import table modification
Attaching a DLL to an existing program file
Detours comes with great sample
programs:
• Withdll
• Injdll
• Setdll
• Traceapi

1-21

Setdll

Detours can add a new DLL to an existing
binary on disk. How?
Detours creates a section named
“.detours” between the export table and
debug symbols
The .detours section contains the original
PE header, and a new IAT
Detours modifies the PE header to point at
the new IAT (reversible)

1-22

Setdll Demo

1-23

Setdll Demo

1-24

Avoiding the Disk

When we perform DLL injection,
LoadLibrary expects the DLL to be on
the disk (or at least an SMB share)
The Metasploit project eliminates this
requirement using a clever hooking
strategy
By hooking functions that are involved in
reading the file from disk, they fool
Windows into thinking the DLL is on disk

1-25

Meterpreter

Hook Call LoadLibrary Unhook
Hooked functions:
• NtMapViewOfSection
• NtQueryAttributesFile
• NtOpenFile
• NtCreateSection
• NtOpenSection

See remote_dispatch.c and libloader.c in
MSF 3.0

1-26

Meterpreter Demo

1-27

Poison Ivy RAT

Tons of malware uses Code Injection
We’ll quickly dig into the details of one
example

1-28

Poison Ivy Capabilities

1-29

Step 1: Inject to Explorer

Poison Ivy client immediately injects to
Explorer and then exits
Output from WinApiOverride32 for pi.exe

1-30

Step 2: Inject again to msnmsgr.exe

Explorer.exe injected code then injects again…
Interestingly, PI does not grab the SE_DEBUG
privilege, so we can’t inject in many existing
processes
Output from WinApiOverride32 for explorer.exe

1-31

Did it Work?

1-32

Where is the evil?

1-33

Kernel Process Injection

1-34

Two Halves of the Process

User land processes are comprised of two
parts
• Kernel Portion

EPROCESS and KPROCESS
ETHREAD and KTHREAD
Token
Handle Table
Page Tables
Etc.

1-35

Two Halves of the Process

User land Portion
• Process Environment Block (PEB)
• Thread Environment Block (TEB)
• Windows subsystem (CSRSS.EXE)
• Etc.

1-36

Kernel Process Injection Steps

Must find suitable target
• Has a user land portion
• Has kernel32.dll and/or ntdll.dll loaded in its address

space
• Has an alterable thread (unless hijacking an existing

thread)
Allocate memory in target process
Write the equivalent of “shellcode” that calls
LoadLibrary
Cause a thread in the parent to execute newly
allocated code
• Hijack an existing thread
• Create an APC

1-37

Allocate memory in parent process

Change virtual memory context to that of
the target
• KeAttachProcess/KeStackAttachProcess
• ZwAllocateVirtualMemory

(HANDLE) -1 means current process
MEM_COMMIT
PAGE_EXECUTE_READWRITE

1-38

Creating the Shellcode

“shellcode” that calls LoadLibrary
• Copy function parameters into address space
• Pass the address of function parameters to

calls
• Can use the FS register

FS contains the address of the TEB
TEB has a pointer to the PEB
PEB has a pointer to the PEB_LDR_DATA
PEB_LDR_DATA contains all the loaded DLLs

1-39

Creating the Shellcode

As an alternative to using the FS register
• Find the address of ntdll.dll from the driver
• Parse its exports section
• Does not work with all DLLs

Only address of ntdll.dll returned by
ZwQuerySystemInformation

1-40

Thread Hijacking

Cause a thread in the parent to execute
newly allocated code - Hijack an existing
thread
• Locate a thread within the parent process
• Change its Context record
• Change Context record back when done

Problems:
• Low priority threads
• Blocked threads
• Changing Context back

1-41

Thread Context Hijacking

Hijack and Context records
lkd> dt nt!_CONTEXT

+0x000 ContextFlags : Uint4B
+0x004 Dr0 : Uint4B
+0x008 Dr1 : Uint4B
+0x00c Dr2 : Uint4B
+0x010 Dr3 : Uint4B
+0x014 Dr6 : Uint4B
+0x018 Dr7 : Uint4B
+0x01c FloatSave : _FLOATING_SAVE_AREA
+0x08c SegGs : Uint4B
+0x090 SegFs : Uint4B
+0x094 SegEs : Uint4B
+0x098 SegDs : Uint4B
+0x09c Edi : Uint4B
+0x0a0 Esi : Uint4B
+0x0a4 Ebx : Uint4B
+0x0a8 Edx : Uint4B
+0x0ac Ecx : Uint4B
+0x0b0 Eax : Uint4B
+0x0b4 Ebp : Uint4B
+0x0b8 Eip : Uint4B
+0x0bc SegCs : Uint4B
+0x0c0 EFlags : Uint4B
+0x0c4 Esp : Uint4B
+0x0c8 SegSs : Uint4B
+0x0cc ExtendedRegisters : [512] UChar

1-42

Alternative Method: APC

Cause a thread in the parent to execute
newly allocated code - Create an APC
• Threads can be notified to run an

Asynchronous Procedure Call (APC)
• APC has a pointer to code to execute
• To be notified, thread should be Alertable

1-43

Alertable Threads and APCs – MSDN

1-44

Finding an Alertable Thread

PETHREAD FindAlertableThread(PEPROCESS eproc)
{

PETHREAD start, walk;

if (eproc == NULL)
return NULL;

start = *(PETHREAD *)((DWORD)eproc + THREADOFFSET);
start = (PETHREAD)((DWORD)start - THREADFLINK);
walk = start;

do
{

DbgPrint("Looking at thread 0x%x\n",walk);

if (*(PUCHAR)((DWORD)walk + ALERTOFFSET) == 0x01)
return walk;

walk = *(PETHREAD *)((DWORD)walk + THREADFLINK);
walk = (PETHREAD)((DWORD)walk - THREADFLINK);

}while (walk != start);

return NULL;
}

1-45

Kernel Process Injection Demo

1-46

Memory Analysis

Motivation
• APIs lie. The operating system can be

subverted.
Example: Unlink injected DLLs from the
PEB_LDR_DATA in the PEB.
Example: Hooking the Virtual Memory Manager
and diverting address translation.

• APIs are not available to “classic” forensic
investigations – offline analysis

1-47

Memory Analysis

Requirements
• No use of APIs to gather data.

• Ability to use any analysis solution on both live
memory and offline memory image dumps.

(Implies the ability to do all memory translation independently.)

• Do not require PDB symbols or any other operating
specific information.

1-48

Steps to Memory Analysis

Ability to access physical memory

Derive the version of the OS – important to
know how to interpret raw memory

Find all Processes and/or Threads

Enumerate File Handles, DLLs, Ports, etc.

1-49

Steps to Memory Analysis

Virtual to Physical Address Translation
• Determine if the host uses PAE or non-PAE
• Find the Page Directory Table – process

specific
• Translate prototype PTEs
• Use the paging file

1-50

Derive the version of the OS

Find the System Process
• Allows the derivation of:

The major operating system version in question
The System Page Directory Table Base
HandleTableListHead
Virtual address of PsInitialSystemProcess
PsActiveProcessHead
PsProcessType

Patent Pending

1-51

Operating System Version

Find the System image name

Walk backwards to identify the Process
Block

The spatial difference between major
versions of the OS is enough to begin to
tell us about the operating system version

Patent Pending

1-52

Operating System Version

Drawback: Ghosts
• There can be more than one System Process

Open a memory crash dump in Windbg
Run a Windows operating system in VMWare

• Solution:
Non-paged kernel addresses are global
We know the virtual address of
PsActiveProcessHead
PsActiveProcessHead and other kernel addresses
should be valid and present (translatable) in both
live or dead memory

Patent Pending

1-53

Memory Translation

PAE vs non-PAE
• Different ways to interpret the address tables
• The sixth bit in the CR4 CPU register

determines if PAE is enabled
• Problem: We do not have access to CPU

registers in memory analysis
• Solution?

Kernel Processor Control Region -> KPCRB ->
KPROCESSOR_STATE ->
KSPECIAL_REGISTERS -> CR4

1-54

Memory Translation

CR4 Heuristic
• Page Directory Table Base and the Page

Directory Table Pointer Base look very
different.

CR3 is updated in the KPCR
• This can be used to identify a valid Page

Directory Table
• The Page Directory can be used to validate

the PsActiveProcessHead

Patent Pending

1-55

Enumerating Injected DLLs

Problem:
• APIs lie.
• Malware can unlink from the

PEB_LDR_DATA lists of DLLs

Solution:
• Virtual Address Descriptors (VADs)

Patent Pending

1-56

VADs

Self balancing binary tree [1]
Contains:
• Virtual address range
• Parent
• Left Child and Right Child
• Flags – is the memory executable
• Control Area

1. Russinovich, Mark and Solomon, Dave, Microsoft Windows Internals, Microsoft Press 2005

1-57

A Memory Map to a Name

VAD contains a CONTROL_AREA
CONTROL_AREA contains a
FILE_OBJECT
A FILE_OBJECT contains a
UNICODE_STRING with the filename

We now have the DLL name

Patent Pending

1-58

Demo

1-59

Conclusion

1-60

Questions?

Email: jamie.butler AT mandiant.com

	Blackout: What Really Happened
	Outline
	Code Injection Basics
	User Mode Injection Techniques
	Injecting code via the Windows API
	1. OpenProcess
	2. VirtualAllocEx
	3. WriteProcessMemory
	4. CreateRemoteThread
	Slide Number 10
	Better Payloads
	Better Payloads
	DLL Injection
	Slide Number 14
	User Mode API Variants
	SetWindowsHookEx
	Permissions and Security
	Injecting code via AppInit_DLLs
	Injecting code via Detours
	Detours Features
	Setdll
	Setdll Demo
	Setdll Demo
	Avoiding the Disk
	Meterpreter
	Meterpreter Demo
	Poison Ivy RAT
	Poison Ivy Capabilities
	Step 1: Inject to Explorer
	Step 2: Inject again to msnmsgr.exe
	Did it Work?
	Where is the evil?
	Kernel Process Injection
	Two Halves of the Process
	Two Halves of the Process
	Kernel Process Injection Steps
	Allocate memory in parent process
	Creating the Shellcode
	Creating the Shellcode
	Thread Hijacking
	Thread Context Hijacking
	Alternative Method: APC
	Alertable Threads and APCs – MSDN
	Finding an Alertable Thread
	Kernel Process Injection Demo
	Memory Analysis
	Memory Analysis
	Steps to Memory Analysis
	Steps to Memory Analysis
	Derive the version of the OS
	Operating System Version
	Operating System Version
	Memory Translation
	Memory Translation
	Enumerating Injected DLLs
	VADs
	A Memory Map to a Name
	Demo
	Conclusion
	Questions?

